Kelp, maggots and mycoprotein among future foods that must be mass-farmed to combat malnutrition


14-05-2021
  Enclosed, modular photobioreactor cultivating Chlorella, a rich source of essential nutrients including amino acids, iron, zinc and B-vitamins.  Credit: Vaxa, Iceland

Radical changes to the food system are needed to safeguard our food supply and combat malnutrition in the face of climate change, environmental degradation and epidemics, says new report.

Researchers at the University of Cambridge say our future global food supply cannot be safeguarded by traditional approaches to improving food production. They suggest state-of-the-art, controlled-environment systems, producing novel foods, should be integrated into the food system to reduce vulnerability to environmental changes, pests and diseases. Their report is published in the journal Nature Food.

The researchers say that global malnutrition could be eradicated by farming foods including spirulina, chlorella, larvae of insects such as the house fly, mycoprotein (protein derived from fungi), and macro-algae such as sugar kelp. These foods have already attracted interest as nutritious and more sustainable alternatives to traditional plant and animal-based foods. 

The production of these ‘future foods’ could change the way food systems operate. They can be grown at scale in modular, compact systems suitable for urban settings as well as isolated communities such as those on remote islands. In an approach the researchers call ‘polycentric food networks’, food could be produced locally and consistently by communities - reducing reliance on global supply chains.

To reach their conclusions, the researchers analysed around 500 published scientific papers on different future food production systems. The most promising, including microalgae photo-bioreactors (devices that use a light source to grow microorganisms) and insect breeding greenhouses, reduce exposure to the hazards of the natural environment by farming in closed, controlled environments. 

“Foods like sugar kelp, flies, mealworm and single-celled algae such as chlorella, have the potential to provide healthy, risk-resilient diets that can address malnutrition around the world,” said Dr Asaf Tzachor, a researcher at the Centre for the Study of Existential Risk (CSER) at the University of Cambridge and first author of the report.

He added: “Our current food system is vulnerable. It’s exposed to a litany of risks - floods and frosts, droughts and dry spells, pathogens and parasites - which marginal improvements in productivity won’t change. To future-proof our food supply we need to integrate completely new ways of farming into the current system.” 

Read the full story

Image: Enclosed, modular photobioreactor cultivating Chlorella, a rich source of essential nutrients including amino acids, iron, zinc and B-vitamins.

Credit: Vaxa, Iceland

Reproduced courtesy of the University of Cambridge

 

The University of Cambridge is acknowledged as one of the world's leading higher education and research institutions. The University was instrumental in the formation of the Cambridge Network and its Vice- Chancellor, Professor Stephen Toope, is also the President of the Cambridge Network.

University of Cambridge (cam.ac.uk)