By allowing farmers to diversify their portfolio, this novel system could offer financial protection from fluctuations in market prices or changes in demand, and mitigate risks associated with an unreliable climate. On a larger scale it could vastly increase capacity for solar-powered electricity generation without compromising agricultural production.
This is not the first time that crops and electricity have been produced simultaneously using semi-transparent solar panels – a technique called ‘agrivoltaics’. But in a novel adaptation, the researchers used orange-tinted panels to make best use of the wavelengths - or colours - of light that could pass through them.
The tinted solar panels absorb blue and green wavelengths to generate electricity. Orange and red wavelengths pass through, allowing plants underneath to grow. While the crop receives less than half the total amount of light it would get if grown in a standard agricultural system, the colours passing through the panels are the ones most suitable for its growth.
“For high value crops like basil, the value of the electricity generated just compensates for the loss in biomass production caused by the tinted solar panels. But when the value of the crop was lower, like spinach, there was a significant financial advantage to this novel agrivoltaic technique,” said Dr Paolo Bombelli, a researcher in the University of Cambridge’s Department of Biochemistry, who led the study.
Image: Greenhouse with tinted solar panels
Credit: Paolo Bombelli (University of Cambridge)
Reproduced courtesy of the University of Cambridge