The result is very damaging to new theories like the extremely popular Supersymmetry.
Current knowledge about the most fundamental matter particles (quarks and leptons, such as an electron) and the forces between them is embedded in the so-called Standard Model. The particle masses are a consequence of their interactions with the Higgs field. Exciting the Higgs field in particle collisions at the LHC recently resulted in the discovery of the Higgs boson.
However, the Standard Model is not the ultimate theory; it does not include gravity nor explain 95% of the Universe, which is in the form of Dark Matter and Dark Energy.
Supersymmetry is called in to fill some of the gaps of the Standard Model. Since it predicts new phenomena, the theory of Supersymmetry can be thoroughly tested at the LHC. A very good place to search is through the decay of a Bs particle (composed of a beauty quark and a strange anti-quark) into two muons (very heavy electrons). It is expected to be a very rare event but can be greatly enhanced be the presence of new physics.
This decay has been observed for the first time by a team at the LHC beauty (LHCb) experiment, a gigantic particle detector at one of the collision points on the 27 km LHC collider.
Read the full story
Image: Primary interaction
Credit: CERN
Reproduced courtesy of the University of Cambridge
__________________________________________